Reg. No. : \square

Question Paper Code : 97063

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Second Semester
Electronics and Communication Engineering
EE 6201 - CIRCUIT THEORY
(Common to Electrical and Electronics Engineering, Electronics and Instrumentation Engineering, Instrumentation Engineering, Biomedical Engineering and Medical Electronics Engineering)
(Regulation 2013)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20$ marks $)$

1. An electrical appliance consumes 1.2 kWh in 30 mins at 120 V . What is the current drawn by the appliance?
2. Calculate the equivalent resistance between the terminals " a " and " b ", in Fig. 1.

Fig. 1
3. Calculate the value of I_{N} for the circuit shown in Fig. 2.

Fig. 2
4. State maximum power transfer theorem for DC networks.
5. Calculate the total inductance of the circuit, if the coefficient of coupling (k) between the two coils is 0.6 , as shown in Fig. 3 .

Fig. 3
6. Define quality factor of a series resonant circuit.
7. A coil of resistance 2.2Ω and an inductance 0.01 H is connected in series with a capacitor across 220 V mains. Find the value of capacitance such that maximum current flows in the circuit at a frequency of 190 Hz . Also find the maximum current.
8. A $50 \mu \mathrm{~F}$ capacitor is discharged through a $100 \mathrm{k} \Omega$ resistor. If the capacitor is initially charged to 400 V , determine the initial energy.
9. Write the equations for the phasor difference between the potentials of the delta connected networks.
10. Three coils, each having a resistance of 20Ω and an inductive reactance of 15Ω are connected in star to a $400 \mathrm{~V}, 3$-phase, and 50 Hz supply. Calculate (a) the line current, (b) power factor, and (c) power supplied.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Using node analysis, find the node voltages and the currents through all the resistors for the circuit shown in Fig. 4.

Fig. 4
(ii) Find the equivalent resistance between the terminals ' a ' and ' b ' for the network shown in Fig. 5.

Fig. 5
Or
(b) For the circuit shown in Fig. 6, find the (i) currents in different branches, (ii) current supplied by the battery, (iii) potential difference between terminals A and B .

Fig. 6
12. (a) Find the current I, through the 20Ω resistor shown in Fig. 7 using Thevenin's theorem.

Fig. 7
Or
(b) Find the current through 5Ω resistor using superposition theorem, in the circuit shown in Fig. 8.

Fig. 8
13. (a) Impedance Z_{1} and Z_{2} are parallel and this combination is in series with an impedance Z_{3}, connected to a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply. $Z_{1}=\left(5-j X_{c}\right) \Omega$, $Z_{2}=(5+j 0) \Omega, Z_{3}=(6.25+j 1.25) \Omega$. Determine the value of capacitance such that the total current of the circuit will be in phase with the total voltage. Find the circuit current and power.

Or

(b) The switch in the circuit shown in Fig. 9 is moved from position 1 to 2 at $t=0$. Find the expression for voltage across resistance and capacitor, energy in the capacitor for $t>0$.

Fig. 9
14. (a) (i) For a magnetically coupled circuit, derive the expression for mutual inductance (M) in terms of L_{1} and L_{2}.
(ii) For the coupled circuit shown in Fig. 10, find the value of V_{2} so that the current $I_{1}=0$.

Fig. 10

Or
(b) With neat illustration, describe the parallel resonant circuit and the equivalent parallel network for a series RL combination. Also derive the unity power factor, f_{p}.
15. (a) Show that three phase power can be measured by two wattmeters. Draw the phasor diagrams. Derive an expression for power factor interms of wattmeter readings.

Or

(b) (i) A 400 V (line to line) is applied to three star connected identical impedances each consisting of a 4Ω resistance in series with 3Ω inductive reactance. Find (1) line current and (2) total power supplied.
(ii) Three star-connected impedances $Z_{1}=(20+j 37.7) \Omega$ per phase are in parallel with three delta-connected impedance $Z_{2}=(30-j 159.3) \Omega$ per phase. The line voltage is 398 volts. Find the line current, power factor, power and reactive volt-ampere taken by the combination.

